
Metamorphic programming

23rd December 2020

BIHANIC Benjamin and NÉRAUD Christophe

Ensimag - UGA

University year 2020 - 2021

1 Abstract

This document aims at presenting our research about metamorphic programming, an obfuscation
method.

First, we will present obfuscation methods in general, then we will describe how metamorphic
programming works. We will give its de�nition, talk about how it is di�erent from polymorphic
programming and give some examples of existing metamorphic viruses. Then, we will illustrate this
concept with an example. Finally, we will talk about possible defenses against this kind of attack.

2 Obfuscation

Obfuscation is a process used to make a code or an executable hardly readable and understan-
dable by a human. Code obfuscation is generally used to protect an intellectual property, to make
a reverse-engineering analysis more complex or to make a binary di�cult to detect by an antivirus
by modifying its signature.

The obfuscation may take several forms:
— by encoding strings: for instance, the malware HerpesNet encoded all strings with the ROT

13 algorithm, making the string less readable and the program less understandable ;
— by using a packer: a software that compresses and obfuscates a binary. The packer also adds

a wrapper which will unobfuscate the binary during the execution. Thanks to the packer, it
is really hard to analyse the binary with a static analysis ;

— by adding directives to block the execution of the program if it is executed in a virtual machine
or through a debugger: this process makes the dynamic analysis a lot harder ;

— by modifying the binary such that its signature is di�erent: it makes an antivirus detection
process harder.

A metamorphic program is a program that is able to change its binary content at each run, but
without altering its behaviour. Thus, its signature changes with every execution, which makes it
invisible to an antivirus.

An antivirus works by comparing the signature of programs — a hash of the executable for ins-
tance — against a database �lled with signatures of known viruses. This method cannot work against
viruses whose signature changes often.

The concept of metamorphism must be separated from polymorphism. A polymorphic program
contains a polymorphic engine whose goal is to mutate the code in order to get a semantically

equivalent program but with a di�erent code [1]. A common way of implementing polymorphism
is through encryption: the code is ciphered so that an antivirus would not be able to detect it, and
it is unciphered when executed. With this de�nition, a polymorphic virus is unable to mutate the
code of its polymorphic engine.

1

On the other hand, a metamorphic code uses a metamorphic engine that creates a logically equi-
valent code. It operates on its own binary representation, hence it is able to mutate its metamorphic
engine as well, making it a lot harder for an antivirus to detect it [2].

Here is a list of some well known metamorphic viruses:
— Zmist: released in 2001, it was the most challenging virus at this time because the concept of

polymorphism and metamorphism was totally new [3] ;
— Zperm: this virus changes the order of its instructions and keeps a logically equivalent code

using jump instructions, it was one of the �rst virus of its kind [4] ;
— MetaPHOR: mostly known as Win32/Simile, it has the particularity of having a very short

encryptor/decryptor compared to the length of the virus’s body [5].

3 Metamorphic program

Building a metamorphic program is quite simple. First, the source code adds sequences of assembly
instructions doing nothing in the program. Then, when the program is run, those sequences are
randomly replaced with a di�erent code that does nothing as well. In that way, the signature will
be randomized at each run.

In this part, we will explain how to create a metamorphic code with some pseudo-code. The
produced metamorphic code is strongly inspired by the �rst answer of the following StackOver�ow
post: https://stackoverflow.com/questions/10113254/metamorphic-c
ode-examples

First, let’s declare a function junk that puts some assembly instruction inside the program.

junk():
add_asm(PUSH, NOP, NOP, NOP, NOP, NOP, NOP, POP)

junk()

This function adds three di�erent assembly instructions in the code. The �rst one, PUSH, saves
the value of a variable by pushing it onto the stack. The second one, NOP, does nothing and skips
to the next instruction. The last one, POP, recovers the value of the variable at the top of the stack.

2

https://stackoverflow.com/questions/10113254/metamorphic-code-examples
https://stackoverflow.com/questions/10113254/metamorphic-code-examples

Then, let’s write a function that reads a binary �le.

read_file():
open_binary_file()
junk()
str = read_binary_file()
junk()
return str

read_�le()

In this function we can notice several calls to the function junk. Those calls do not change the
expected behaviour — opening and reading a �le — as they simply add assembly code that does not
interfere with the opening and reading process. Those instructions will be randomly modi�ed later.

Now, let’s write a simple function that writes a binary code.

write_file(str):
open_binary_file()
junk()
write_binary_file(str)

write_�le()

Let’s now modify the binary with the following function.

metamorphic(str):
junk()
for_each junk in str:

junk()
randomly_modify_NOP(str)

metamorphic()

This function looks for all assembly instructions added by the function junk() and randomly
modi�es the NOP instructions. The instructions PUSH and POP will by default save and load the
registers $EAX or $RAX (in 32 or 64 bits architectures respectively), so the randomly added ins-
tructions will be operations on this register, such as adding or subtracting a random value. The add
instructions have to be of the same length as the one in the junk() in order not to invalidate the
binary code by changing all the o�sets.

3

Finally we can write the main function.

meta():
read_file()
metamorphic()
write_file()

main()

This pseudo-code shows how a metamorphic program works: during each run, it reads the content
of the targeted executable, then it replaces all the junk instructions by random instructions that do
not break the behaviour of the code but still change its signature, and writes it to a new executable.

Here is a GitHub link to a real and simple implementation that we made of this metamorphic
program in modern C++:

https://github.com/Doyko/metamorphic

4 Defenses

Even though the job of an antivirus is harder on a metamorphic virus, there are still some other
techniques that allow to detect those.

For instance, metamorphic code does not o�er protection against heuristic analysis. This kind of
analysis operates by executing the targeted program in a virtual sandbox environment, and ana-
lysing its behaviour [6]. The antivirus then looks for suspicious operations such as replication or
attempted access to sensible �les, which are usually performed by malwares. A metamorphic virus
might then be detected by an antivirus, as it uses replication-like mechanisms.

Moreover, a metamorphic virus will need to analyze its own structure in order to apply the ran-
domization mechanisms. An antivirus could then look for such instructions.

As a metamorphic virus will usually appear unknown to an antivirus, arti�cial intelligence based
detection methods are being developed as well in order to detect a new virus as fast as possible.

An article from Moustafa Saleh suggests a statistical solution for detecting metamorphic codes,
but it needs some beforehand preparation [7]. The basic idea is, for each known metamorphic virus,
we start by making a database of some of its replications. Then, we organize it using a mathematical
model based on the study of the eigenvalues of the code. Then, an unknown input �le would be
compared with the already known data, and if its behaviour is similar enough, it would be classi�ed
as a virus. This method is not perfect as it requires samples of already known metamorphic viruses,
but it allows to detect a metamorphic virus we already know quite e�ciently.

4

https://github.com/Doyko/metamorphic

Finally, it is worth mentioning that those kind of viruses are able to propagate thanks to users’ lack
of knowledge on security. The vast majority of viruses are transmitted through e-mail, as fake Word
attachments, rogue ZIP �les or simple phishing for instance. It is thus important for a company to
raise awareness amongst its employees about these methods, as well as implementing access control
policies in order to isolate the most sensible parts of their infrastructure.

5 Conclusion

Metamorphic programming has since a few years become a really challenging �eld of study. Un-
like classical self-replicating malwares and unlike polymorphic codes, metamorphic viruses are able
to fully mutate each part of their code, which makes the detection process for antiviruses really
di�cult.

However, it is still possible to detect those viruses to a certain extent. Heuristic analysis or sta-
tistical study of the most well known metamorphic codes gives a lot of information about their
behaviour and helps �nding new ways to classify them.

Although one could expect that current progress in the �eld of arti�cial intelligence would lead to
the emergence of new methods of detection, it is nonetheless essential to continue raising awareness
amongst end users to ensure they are less likely to open an obviously infected �le.

Références

[1] M. Rouse, “Metamorphic virus,” April 2018. [Online]. Available: https://searchsecurity.techtar
get.com/de�nition/Metamorphic-virus

[2] T. M. Driller, “Metamorphism in practice or "how i made metaphor and what i’ve learnt",”
February 2002. [Online]. Available: https://web.archive.org/web/20070602061547/http:
//vx.netlux.org/lib/vmd01.html

[3] P. Szor, “The art of computer virus research and defense,” Symantec Press, pp. 278–280, 2005.
[Online]. Available: http://index-of .es/Viruses/T/The%20Art%20of%20Computer%20Virus%20
Research%20and%20Defense.pdf

[4] “Z0mbie’s home page.” [Online]. Available: https://z0mbie.dreamhosters.com

[5] “W32/etap-a,” Sophos, February 2013. [Online]. Available: https://www.sophos.com/en-us/threa
t-center/threat-analyses/viruses-and-spyware/W32~Etap-A.aspx

[6] W. Wong and M. Stamp, “Hunting for metamorphic engines,” Journal in Computer Virology, 2006.

[7] M. Saleh, “Towards metamorphic viruses recognition using eigenviruses,” July 2011. [Online].
Available: https://arxiv.org/ftp/arxiv/papers/1206/1206.5871.pdf

5

https://searchsecurity.techtarget.com/definition/Metamorphic-virus
https://searchsecurity.techtarget.com/definition/Metamorphic-virus
https://web.archive.org/web/20070602061547/http://vx.netlux.org/lib/vmd01.html
https://web.archive.org/web/20070602061547/http://vx.netlux.org/lib/vmd01.html
http://index-of.es/Viruses/T/The%20Art%20of%20Computer%20Virus%20Research%20and%20Defense.pdf
http://index-of.es/Viruses/T/The%20Art%20of%20Computer%20Virus%20Research%20and%20Defense.pdf
https://z0mbie.dreamhosters.com
https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/W32~Etap-A.aspx
https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/W32~Etap-A.aspx
https://arxiv.org/ftp/arxiv/papers/1206/1206.5871.pdf

	Abstract
	Obfuscation
	Metamorphic program
	Defenses
	Conclusion

